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Abstract 
A new model has been developed for the surface energy-

driven shortening of a free, cone-shaped fluid ligament of finite 
length, as a function of ligament diameter, length, mass and head 
speed. It differs significantly from classical models based on 
infinitely long cylindrical (Taylor) or conical (Keller) shapes, but 
leads to overall shortening speeds which are very similar to those 
provided by Taylor’s model for typical drop-on-demand fluids.  

However, if a realistic initial velocity distribution along the 
length of the ligament is included, the model predicts more rapid 
shortening, by as much as 2 m/s for a jet speed of 6 m/s.  Such 
effects should be taken into account when analyzing the behavior 
of real jets. 

The model’s predictions of shortening speeds for free drop-
on-demand jets fail to account for all experimental observations, 
which for some polymer solutions can be as much as 2-3 times as 
high. This effect is attributed to elastic retraction, and may be a 
general feature linked to the polymer relaxation time. 

Previous models 
 Higher drop-on-demand (DoD) ink-jet speeds generally 

involve longer fluid ligaments and later detachment of the jet from 
the nozzle. Reliable estimates of the time required to form a final 
drop would be valuable in the design of high speed printing or 
deposition processes, in setting-up or specifying parameters such 
as drop velocity, substrate position and printing rate, for almost all 
types of ink-jet fluid. We focus here on the speed with which the 
fluid ligament length shortens. 

Theoretical treatments of free ligament shortening after 
break-off based on static cylinders or cones have continued to be 
used, despite the availability of precise measurements of the 
shapes and speeds of extending ink-jets [1-3]. Reasons for this 
have included their simplicity and the apparent success of the 
classical results for the shortening speed, derived from Taylor’s [4] 
model for the case of the bounding rim formed on a thin fluid sheet 
formed by impacting jets. Another reason is the attention paid to 
fluids with low viscosity, where the ligament tends to pinch off at 
both ends, leaving a thin fluid body that can reasonably be 
represented by a cylindrical shape during the early recoil time. 
However, ligament shapes measured for more viscous fluids are 
approximately conical and comprise fluid with an internal, axial 
velocity distribution prior to break-off. 

Keller [5] surmised that, for the breaking of threads (and 
films) of various geometries, some useful relations could be 
deduced on the basis of a power law in the radial (relevant) 
dimension. Power laws assume the same behavior right down to 
vanishing radius, so that after break-off the broken tip has zero 
mass and infinite recoil speed, for a conically shaped ligament. 
The subsequent tail shortening speed always decreases with 

increasing time in this model and therefore never reaches a 
constant value. 

Such results have been recently used without comment [1], 
although the dynamics of pinching and breaking of viscous threads 
involve some very complex phenomena [6]. In this work we 
explore how finite jet length and more realistic assumptions of jet 
shape and internal velocity distribution can be incorporated into a 
model for ligament shortening, and compare its predictions with 
those from the Keller and Taylor models. Shortening speeds are 
then compared with those measured in jetting experiments with 
Newtonian and viscoelastic fluids.  

Jetting fluid is often characterized by its density ρ, surface 
tension σ and viscosity η, but influences of viscosity or elasticity 
are not included in any of the models. The shortening of the fluid 
ligament is driven by surface tension and mass is conserved.  

Figure 1 shows the geometries assumed in (a) the classical 
model for a cylindrical ligament (Taylor), and (b) the model for a 
conical ligament (Keller) [5]. In the Taylor model the diameter D 
is constant but for cones it increases linearly with x. 

 
Figure 1(a): The basis of the classical (Taylor) model for shortening of a 
cylindrical ligament. The ligament is assumed to be infinitely long and 
stationary (U=0), with no internal velocity distribution. The end mass m grows 
linearly with time, and the ligament exhibits a constant shortening speed given 
by vT = 2(σ/ρD)1/2. 

 
Figure 1(b): The basis of the (Keller) model for shortening of a conical 
ligament (where D′ = 2bx). The shortening speed is given by v(t) = (8σ/5ρbt)⅓ 
and thus varies with time.  The mean speed over time T is <v> = (3/2) v(T).  

Proposed model 
Figure 2 shows the model proposed for a truncated conical 

ligament with initial length L, including an initial axial speed 
distribution which varies linearly along the ligament. The total 
ligament mass M and the tail end mass m experience equal and 
opposite surface forces at the ligament diameter D′, and the 
remaining part has mass (M-m), here shown lumped into the head. 
Both ends are assumed to remain attached to the ligament 
throughout shortening; the viscosity and elasticity are also ignored. 
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Figure 2: The basis of the present model for shortening of a truncated conical 
ligament with initial length L. The total (conserved) mass is M and there is an 
initial axial velocity profile due to ligament extension between the break-off 
position (close to the nozzle) and the tip. Further details are described in [7]. 

The acceleration for the tail (and head) can be expressed in 
terms of the physical and the geometrical parameters of the 
problem, and a full derivation is given elsewhere [7]. The classical 
Taylor model for an infinite cylindrical ligament (Fig. 1a) predicts 
a constant jet shortening speed vT given by: 
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At the break-off point, if the cylindrical ligament is assumed 
to have a hemispherical end-cap of diameter D at break-off, the 
acceleration of this free end mass, for a cylindrical ligament, after 
time t  where t = 0 at break-off, is given by 
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where x is the reduction in the length L of the original ligament in 
the time t. The assumption in the Taylor model is that the cylinder 
is stationary: equation (2) shows that the tail shortens at a steady 
rate given by equation (1), whether the (unknown) initial tail 
shortening velocity v (t=0) at break-off is greater or smaller than 
the steady-state value vT. The assumption of the initial 
hemispherical end introduces the diameter D into the denominator 
of equation (2). This choice is important only if x is small, and 
other representations of the initial end shape can be explored 
through equation (2) at constant vT; for example, if D=0, the 
equilibrium speed vT  is attained instantaneously after break-off. 

When the ligament is not cylindrical, but a truncated cone of 
length L, and with an initial hemispherical end, the effects of the 
ligament shape enter through the instantaneous value of p=D′/D, 
while the introduction of an initial axial speed distribution which 
varies linearly along the ligament (at break-off) introduces two 
terms involving (U/L), to give equation (3): 
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Equation (3) shows that for cylinders (where p=1), the initial 
linear axial velocity distribution for U > 0 always increases the tail 
acceleration, whereas without an initial axial gradient (where U=0) 
conical shapes with p > 1 always reduce the tail acceleration; with 
both U=0 and p=1, equation (3) reduces to equation (2). 

 The head mass (M-m) acceleration can be written in terms of 
the shortening speed from the head end V and mass m: 
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The time variation of tail mass m is obtained as part of the full 
derivation of equation (3) and the total ligament shortening speed 
can be determined by integrations of equations (3) & (4) [7]. 
  

 
Figure 3(a): The shortening speed predicted for a finite cylindrical ligament 
with a typical diameter of 3.7 μm [2]. The ‘tail only’ curve shows a constant 
shortening speed (i.e. the Taylor prediction), while the upper curve which 
incorporates both head and tail motion shows a steadily increasing speed.  

 
Figure 3(b): The shortening speeds predicted for a long, truncated, conical 
ligament. There is no initial axial velocity profile within the ligament (U=0).  

 
Figure 3(c): Shortening speeds predicted for long ligaments (initial length 1 
mm), corresponding to the curves and fluid of Figure 3(b) but with a realistic 
initial axial velocity which varies linearly along the ligament.  The ‘tail only’ 
curve is almost flat but the overall shortening speed (upper curve) rises to ~ 
8.4 m/s at completion of ligament collapse after 225 µs. 
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Some of the resulting predictions are shown in Figs. 3(a-c), for 
typical DoD conditions, with a drop speed of 6 m/s and a ligament 
diameter at break-off of 3.7 μm [2, 8]. As shown in Fig. 3(a) (tail 
only) the Taylor prediction vT for the shortening speed of the 
ligament is fortuitously also ~6.0 m/s. 

Discussion of the model predictions 
Figs. 3(a-c) show three examples of results for the same, 

typical DoD printing fluid: (a) is for a cylindrical ligament with 
finite length, (b) is for a conical ligament of the same mass, and (c) 
is for the finite conical ligament with an initial linear axial velocity 
distribution within the ligament. Tail shortening speeds shown by 
the lower curves in Figs. 3(a-c) were computed from equation (3); 
the overall head + tail shortening speeds are the upper curves in 
Figs. 3(a-c), and were determined using equations (3) and (4). 

Fig. 3(a) shows the effect of assuming finite ligament length 
on the overall shortening speed: at short times, the head speed has 
not had time to slow down as a back reaction to the much lighter 
tail, but as the tail gains mass it loses acceleration while the head 
gains it (towards the tail end, from the surface tension which 
drives the ligament collapse). The speed is ~20% greater than the 
Taylor prediction, which is shown by the lower curve in Fig. 3(a). 

The overall ligament shortening speed in Figure 3(b) is ~ 3% 
lower than the Taylor prediction for D = 3.7 µm, due to the conical 
shape. Keller’s model [5] for the same value of b predicts a tail 
shortening speed of ~ 0.6 m/s after 225 µs, which is only 1/7 of the 
value predicted by the present model. Although the volume of the 
ligament would be only 3% greater, the non-truncated cone 
assumed by the Keller model would be ~ 50% longer, and would 
imply an unrealistic ligament break-off point >500 µm behind the 
nozzle plate. The Keller theory gives unrealistic predictions of 
shortening speeds, despite the assumption of a conical ligament 
shape, because real ligaments do not taper down to a point. 

Thus after including the effects of finite ligament mass, 
length, conical shape, and also taking account of the movement of 
both ends, the overall ligament shortening speed is predicted to be 
roughly constant and not far from the value predicted from the 
simplest, Taylor model which ignores all these effects. However, 
the agreement is fortuitous and results from the cancellation of 
significant, but opposite, effects which individually change the 
speed by ~ 30%. 

The predictions of jet shortening speed are further altered if 
the initial axial velocity distribution along the length of the 
ligament at break-off [8] is also included, as shown by comparing 
Figs. 3(b) and (c).  The latter incorporates an initial constant 
velocity gradient of ~ 6 m/s per mm. The predicted ligament 
shortening speed is increased by ~ 2 m/s at 225 µs after break-off, 
some 30% higher than that predicted by the Taylor model 
(equation (1). The effect of initial ligament length L in equation (3) 
is significant. The overall collapse time increases with length due 
to two effects: (i) long ligaments will have a lower velocity 
gradient (U/L) than short ligaments and therefore will have overall 
shortening speed curves which are less steep than those in Fig. 
3(c); and (ii) the overall collapse time ≈ L/(shortening speed).  

For a typical DoD printing fluid and a drop speed of 6 m/s, 
the overall ligament shortening speed, attained before completion 
of the ligament collapse to form the final drop, is thus predicted to 
be ~30% higher than predicted from the classic result (equation 1). 

Comparison with ligament shortening speeds 
measured for polymer solutions 

We have seen that an overall ligament shortening speed of 
<8.5 m/s is predicted by the proposed model (Fig. 3c), and can 
now compare this with experimental measurements reported for 
dilute polymer solutions [2, 7], pure solvents, and other model ink-
jet fluids [8]. Fig. 4 shows very rapid shortening, at ~ 18.5 m/s, for 
polyethylene oxide (molecular weight ~100 kDa) at concentrations 
of 0.05 and 0.1 wt% in water/glycerol with a viscosity of 11 mPa 
s.  This speed was much higher than that for most other fluids 
tested, including solvents with similar viscosity and ligament 
diameter at break-off.  Figure 3(c) predicts that the ligament 
shortening speed should reach only ~ 6.5 m/s after 70 µs. We 
attribute this higher speed (~ 3 times faster than the model 
prediction) to the elastic retraction of polymer molecules within 
the ligament and infer that they must have become extended 
during ligament formation.  For such viscoelastic fluids, it is 
therefore clear that the effects of elasticity cannot be ignored, and 
in some cases can even dominate the process of ligament 
shortening. 

 
Figure 4: Measured values of jet length for polyethylene oxide (MW ~ 100 
kDa) in water/glycerol at viscosity of ~11 mPa s, at (■) 0.1 wt% and (♦) 0.05 
wt% concentration, showing jet shortening speeds of ~ 18.5 m/s after break 
off. 

Figure 5(a) shows measured ligament shortening speeds for 
various concentrations of polymer solutions (polystyrene in diethyl 
phthalate and polyethylene oxide in water/glycerol) jetted at 6 m/s 
[2, 8]; there is a marked dependence on the molecular weight for 
the two polymer systems studied, as well as reasonable agreement 
with the predictions of the Taylor model (equation 1) and thus also 
with the present model (equations 3 and 4) for the highest 
molecular weight polymers. Figure 5(b) shows the same data 
plotted against the relevant polymer (Zimm) relaxation time [9]. 
The three fluids with speeds of >15 m/s have similar Zimm times, 
but quite different molecular weights, and represent both polymer-
solvent systems. This behavior of certain polymer solutions may 
suggest a method of improving the jetting performance of ink-jet 
fluids that necessarily involve low concentrations of polymer 
additives. Further details, and further modeling of the polymer 
physics underlying these marked differences in ligament 
shortening speed are provided elsewhere [9]. 
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Figure 5(a): Ligament shortening speeds, measured for various polymer 
solutions jetted at 6 m/s [2, 7, 8]. The solid symbols are for PS+DEP and the 
open symbols for PEO in water/glycerol, at different molecular weights and 
concentrations. The horizontal lines show the predictions from equation (1) for 
the two pure solvents (DEP = diethyl phthalate and W+G = water/glycerol).  

 
Figure 5(b): Data from Figure 5(a) plotted against the Zimm relaxation time for 
the polymer-solvent systems [9]. There are 3 data points above 15 m/s, two of 
them happen to coincide as they did in Figure 5(a), corresponding to Figure 4 
for PEO in water/glycerol, the other corresponds to PS(210 kDa) in DEP. 

Conclusions 
An improved model for jet ligament shortening process has 

been compared with the classical theory (originally due to Taylor, 
for cylinders, and extended by Keller to other geometries) that 
ignores the true ligament shape (a truncated cone) and also ignores 
the fact that the ligament contains an axial velocity gradient. 

Predictions from the current model fortuitously lie close to those 
from the Taylor model, and both models fail to predict the much 
higher shortening speeds observed for some dilute polymer 
solutions. The results suggest that the effects of polymer elasticity 
cannot be ignored, and in some cases may even dominate the 
process of ligament shortening.  
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